An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions

نویسندگان

  • Richard B. Pember
  • John B. Bell
  • Lawrence Livermore
  • Phillip Colella
چکیده

In this paper we describe an adaptive Cartesian grid method for modeling timedependent inviscid compressible ow in irregular regions. In this approach a body is treated as an interface embedded in a regular Cartesian mesh. The single grid algorithm uses an unsplit second-order Godunov algorithm followed by a corrector applied to cells at the boundary. The discretization near the uid-body interface is based on a volume-ofuid approach with a redistribution procedure to maintain conservation while avoiding time step restrictions arising from small cells where the boundary intersects the mesh. The single grid Cartesian mesh integration scheme is coupled to a conservative adaptive mesh re nement algorithm that selectively re nes regions of the computational grid to achieve a desired level of accuracy. Examples showing the results of the combined Cartesian grid integration/adaptive mesh re nement algorithm for both twoand three-dimensional ows are presented. 2 (This page intentionally left blank) 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions* RICHARD 13. PEMBER AND JOliN

In this paper we describe an adaptive Cartesian grid method for modeling time-dependent inviscid compressible flow in irregular regions, In this approach a body is treated as an interface embedded in a regular Cartesian mesh. The single grid algorithm uses an unsplit second-order Godunov algorithm followed by a corrector applied to celis at the boundary. The discretization near the fluidbody in...

متن کامل

An Adaptive Semi-Implicit Scheme for Simulations of Unsteady Viscous Compressible Flows

A numerical scheme for simulation of unsteady, viscous, compressible flows is considered. The scheme employs an explicit discretization of the inviscid terms of the N avier-Stokes equations and an implicit discretization of the viscous terms. The discretization is second order accurate in both space and time. Under appropriate assumptions, the implicit system of equations can be decoupled into ...

متن کامل

An immersed boundary method for compressible flows using local grid refinement

This paper combines a state-of-the-art method for solving the three-dimensional preconditioned Navier–Stokes equations for compressible flows with an immersed boundary approach, to provide a Cartesian-grid method for computing complex flows over a wide range of the Mach number. Moreover, a flexible local grid refinement technique is employed to achieve high resolution near the immersed body and...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

A hybrid Cartesian grid and gridless method for compressible flows

A hybrid Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian grid is used as baseline mesh to cover the computational domain, while the boundary surfaces are addressed using a gridless method. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993